Sunday, October 11, 2009

รถยนต์ไฟฟ้า - แบบฝึกหัดการอ่าน (Reading Comprehension) 02

รถยนต์ไฟฟ้า (Electric car)

ประกอบ คุปรัตน์
Pracob Cooparat
E-mail: pracob.cooparat@gmail.com


แปลและเรียบเรียงจาก Wikipedia, the free encyclopedia
Keywords: พลังงานทางเลือก, เทคโนโลยี, การเดินทางขนส่ง,

ในบทความนี้ เป็นบทความอ่านภาษาอังกฤษนอกเวลาเกี่ยวกับ รถไฟฟ้า(Electric Cars) โปรดใช้เวลาอ่านตามความสะดวกของท่าน อ่านเนื้อความอย่างถ้วนทั่วเสียก่อน แล้วค่อยตอบคำถาม
มีคำถามอยู่ 67 คำถามที่ต้องการให้ผู้อ่าน อ่านแล้วตอบอย่างสั้นๆที่แสดงให้เห็นว่ามีความเข้าใจในเนื้อความที่อ่าน ท่านสามารถอ่าน สืบค้นความหมายเพิ่มเติมจาก Dictionary, ค้นหาความหมายของคำหรือบุคคลเพิ่มเติม โดยใช้ระบบสืบค้นอย่างที่มีอยู่ คือ Google, Wekipedia หรืออื่นๆ
หลังได้อ่านและทำการบ้านแล้ว จะนำมาอภิปรายในชั้นเรียน
ประกอบ คุปรัตน์


รถยนต์ไฟฟ้า (electric car) เป็นรถยนต์ที่ใช้พลังงานทางเลือก (alternative fuel automobile) ที่ใช้มอเตอร์ไฟฟ้า (electric motors) ตัวควบคุมการทำงานของมอร์เตอร์ (motor controllers) เพื่อไปใช้เป็นพลังงานหมุน (propulsion) เพื่อทดอแทนพลังหมุนอันเป็นวิธีการที่ใช้โดยทั่วไปในรถยนต์ใช้พลังงานเผาไหม้ (internal combustion engine - ICE) รถยนต์ไฟฟ้าเป็นหนึ่งในยานพาหนะที่ใช้ไฟฟ้า ( electric vehicle) ที่เจตนาใช้เพื่ดการขับเคลื่อนเดินทางบนถนน เหมือนกับรถยนต์ที่ใช้กันมากในปัจจุบัน รถไฟฟ้าโดยทั่วไปจะมีแผงแบตเตอรี่ ดังนั้นจึงเรียกในอีกชื่อหนึ่งว่า battery electric vehiclesหรือเรียกย่อๆว่า BEVs ส่วนวิธีการจัดเก็บพลังงานที่คาดว่าจะนำมาใช้ในอนาคตอื่นๆอาจได้แก่ ultracapacitors, fuel cells, และระบบ spinning flywheel ซึ่งมีการจัดเก็บพลังงานในรูปของ kinetic energy.

รถยนต์ไฟฟ้า จะมีการพัฒนาไปข้างหน้าได้ด้วยพัฒนาการต่อไปนี้

1. การทำให้น้ำหน้กรวมของรถยนต์มีขนาดเบา โดยเลือกใช้วัสดุประกอบรถยนต์ที่เบา แต่คงทนเมื่อเทียบกับน้ำหนัก ทำให้รถยนต์มีความสะดวกสบายในการนั่ง แต่ยังคงความปลอดภัยสำหรับผู้โดยสาร

2. การค้นคว้าและพัฒนาระบบจัดเก็บพลังงานไฟฟ้า ซึ่งทั่วไปเรียกว่า Battery แต่ในต่อๆไป เทคโนโลยีจัดเก็บอาจทำให้มีชื่อเรียกเพื่อให้เข้าใจในเทคโนโลยีที่ไม่สับสนอื่นๆ ซึ่งทิศทางของมันคือ การให้พลังงานทีหนาแน่น ใช้ได้เป็นระยะเวลายาวนาน มีพลังงานสม่ำเสมอ มีความปลอดภัยในการใช้ สามารถอัดไฟ (Charging) ได้รวดเร็ว

3. การวางระบบเครือข่ายไฟฟ้า (Electric Grids) ที่ทำให้ผู้ใช้รถไฟฟ้าสามารถเติมพลังงานไฟฟ้าได้จากที่ต่างๆกว้างขวาง เหมือนที่เรามีปั๊มน้ำมัน (Gas Stations) ในปัจจุบัน สถานที่เติมพลังไฟฟ้าส่วนหนึ่งคือที่บ้าน หรือโรงแรมที่พักคนเดินทาง ที่ทำงานที่เมื่อไปทำงานแล้ว จอดรถเป็นเวลานานแล้วสามารถเติมพลังงานไปได้ ศูนย์การค้า ซึ่งอาจมีกิจกรรมอื่นๆร่วมไปด้วย เช่น ร้านอาหาร บริการเสริมสวย ตัดผม ดัดผม ฯลฯ

4. การพัฒนาระบบพลังงานไฟฟ้าที่ไม่ใช้คาร์บอนด์ให้มากขึ้น ที่มีอัตราส่วนของการผลิตพลังงานที่ไม่ได้มาจากคาร์บอนด์ เช่น พลังไฟฟ้าจากเขื่อน (Hydro-Powered Electricity), พลังจากโรงไฟฟ้านิวเคลียร์ (Nuclear-Powered Plants), พลังจากกังหันลม (Wind-Turbines) พลังงานจากแสงอาทิตย์ (Solar-Cells) และลดการพึ่งพาพลังงานจากถ่านหิน น้ำมัปิโตรเลียม และแก๊สธรรมชาติ หรืออื่นๆที่มีฐานจากคาร์บอนด์

5. การใช้รถไฟฟ้าในลักษณะลูกประสม (Hybrid Cars) คือใช้พลังไฟฟ้าร่วมและประสานกับพลังงานจากน้ำมันเชื้อเพลิง (Fuels) แต่พลังเชื้อเพลิงเหล่านี้จะเป็นแบบที่ผลิตจากพืชผลการเกษตรที่เป็นของเหลือใช้ หรือผลิตจากวัสดุเหลือใข้ ราคาต่ำ หรือมีประสิทธิภาพในการสร้างพลังงานอย่างสูง เช่น จากสาหร่าย (Algae) ที่สามารถใข้พื้นที่น้ำจืด น้ำทิ้ง นำทะเลชายฝั่ง อัตราวส่วนของการยังใช้พลังงานเชื้อเพลิงนี้ ขึ้นอยู่กับการวางระบบเครือข่ายพลังงานไฟฟ้า (Electric Grids) และการทำให้ต้นทุนพลังงานไฟฟ้านั้นถูกพอ และมาจากแหล่งที่ไม่ใช้คาร์บอนด์ได้มากน้อยเพียงใด ราคาพลังงานอย่างน้ำมันเชื้อเพลิงเป็นตัวแปรที่จะเร่งหรือชะลอการพัฒนารถยนต์ไฟฟ้า

6. การปรับเปลี่ยนวัฒนธรรมการอยู่อาศัย ในอีกด้านหนึ่งของการใช้ยานพาหนะเพื่อการเดินทางนั้น จะมีทางเลือกอื่นๆเพิ่มขึ้นมาก คนที่อยู่ในเมืองใหญ่ ส่วนหนึ่งจะเลือกการพักอาศัยอยู่ในที่ๆเดินทางไปทำงานสะดวก เช่น อยู่ในบ้านหรือที่พักในแนวตั้ง (Stacked up) คอนโดมีเนียมที่มีหลายชั้น การเดินทางไกล เป็นอันมาก ก็สามารถเลือกการใช้ระบบขนส่งสาธารณะ ซึ่งมีความเร็วสูงกว่า เช่น รถไฟความเร็วสูง (High-Speed Trains) หรือใช้เครื่องบิน ดังในกรณีที่ต้องเดินทางเป็นระยะทางกว่า 500 กิโลเมตร แทนที่จะต้องขับรถไป ก็ใช้การเดินทางระบบสาธารณะ แล้วเมื่อถึงปลายทาง ก็จะมีบริการรถเช่า (Car Rentals) ซึ่งจะเป็นการเดินทางภายในเมือง หรือเดินทางระยะสั้นๆ

แต่ด้วยเหตุที่ทุกฝ่ายทราบดีว่า น้ำมันเชื้อเพลิงที่ต้องใช้การขุดเจาะ (Petroleum) นั้นจะหมดไปทุกที รถยนต์ที่ต้องใช้พลังงานไฟฟ้า จึงเป็นทางเลือกหนึ่งที่มีอนาคตอย่างมาก

Electric cars enjoyed popularity between the mid-19th century and early 20th century, when electricity was among the preferred methods for automobile propulsion, providing a level of comfort and ease of operation that could not be achieved by the gasoline cars of the time. Advances in ICE technology soon rendered this advantage moot; the greater range of gasoline cars, quicker refueling times, and growing petroleum infrastructure, along with the mass production of gasoline vehicles by companies such Ford, which reduced prices of gasoline cars to less than half that of equivalent electric cars, led to a decline in the use of electric propulsion, effectively removing it from important markets such as the United States by the 1930s.

In recent years, increased concerns over the environmental impact of gasoline cars, along with reduced consumer ability to pay for fuel for gasoline cars, has brought about renewed interest in electric cars, which are perceived to be more environmentally friendly and cheaper to maintain and run, despite high initial costs. Electric cars currently enjoy relative popularity in countries around the world, though they are notably absent from the roads of the United States, where electric cars briefly re-appeared in the late 90s as a response to changing government regulations. The hybrid electric car has become the most common form of electric car, combining a internal combustion engine powertrain with supplementary electric motors to run the car at idle and low speeds, making use of techniques such as regenerative braking to improve its efficiency over comparable gasoline cars, while not being hampered by the limited range inherent to current battery electric cars. Hybrid cars are now sold by most major manufacturers, with notable models including the Toyota Prius and the forthcoming Chevrolet Volt, a plug-in hybrid which uses a fully electric drivetrain supplemented by a gasoline-powered electric generator to extend its range. As of 2009, the world's most popular battery electric car is the REVAi, also known as the G-Wiz, which is produced by an Indian company and sold in a number of countries in Europe and Asia.

ความหมายเกี่ยวกับศัพท์

Etymology
Electric cars are a variety of electric vehicle (EV); the term "electric vehicle" refers to any vehicle that uses electric motors for propulsion, while "electric car" generally refers to road-going automobiles powered by electricity. While an electric car's power source is not explicitly an on-board battery, electric cars with motors powered by other energy sources are generally referred to by a different name: an electric car powered by sunlight is a solar car, and an electric car powered by a gasoline generator is a form of hybrid car. Thus, an electric car that derives its power from an on-board battery pack is called a battery electric vehicle (BEV). Most often, the term "electric car" is used to refer to pure battery electric vehicles, such as the REVAi and GM EV1.
1. คำว่า Electric Vehicle กับความว่า Electric Car มีความหมายต่างกันอย่างไร
2. Solar Car คืออะไร
3. Hybrid Car คืออะไร มีลักษณะเด่นอย่างไร
4. battery electric vehicle (BEV) คืออะไร หมายความว่าอย่างไร

ประวัติศาสตร์
History

ช่วงทศวรรษ 1830 ถึง 1900s 1830s to 1900s: Early history

Electric vehicle model by Ányos Jedlik, the inventor of electric motor (1828, Hungary).
Electricity is one of the oldest automobile propulsion methods still in use today. The invention of the electric vehicle is attributed to various people, including the Hungarian inventor of the electric motor, Ányos Jedlik, Vermont blacksmith Thomas Davenport, Professor Sibrandus Stratingh of Groningen, the Netherlands, and Scotsmen Robert Davidson and Robert Anderson. The invention of improved battery technology, including efforts by Gaston Plante in France in 1865, as well as his fellow countryman Camille Faure in 1881, paved the way for electric cars to flourish in Europe. France and the United Kingdom were the first nations to support the widespread development of electric vehicles, while the lack of natural fossil resources in Switzerland resulted in the rapid electrification of its railway network to reduce its dependence on foreign energy. English inventor Thomas Parker, who was responsible for innovations such as electrifying the London Underground, overhead tramways in Liverpool and Birmingham, and the smokeless fuel coalite, claimed to have perfected a working electric car as early as 1884. Before the pre-eminence of internal combustion engines, electric automobiles also held many speed and distance records. Among the most notable of these records was the breaking of the 100 km/h (62 mph) speed barrier, by Camille Jenatzy on April 29, 1899 in his 'rocket-shaped' vehicle Jamais Contente, which reached a top speed of 105.88 km/h (65.79 mph).
German electric car, 1904, with the chauffeur on top
It was not until 1895 that Americans began to devote attention to electric vehicles, after A.L. Ryker introduced the first electric tricycles to the US, many innovations followed, and interest in motor vehicles increased greatly in the late 1890s and early 1900s. In 1897, electric vehicles found their first commercial application as a fleet of electrical New York City taxis, built by the Electric Carriage and Wagon Company of Philadelphia, was established. Electric cars were produced in the US by Anthony Electric, Baker, Columbia, Anderson, Edison, Studebaker, Riker, and others during the early 20th century. In 1917, the first gasoline-electric hybrid car was released by the Woods Motor Vehicle Company of Chicago. The hybrid was a commercial failure, proving to be too slow for its price, and too difficult to service.
1912 Detroit Electric advertisement
5. ใคร และหรือบริษัทใด ที่ได้ประดิษฐรถ Hybrid Car เป็นครั้งแรก และในปี ค.ศ. อะไร
Despite their relatively slow speed, electric vehicles had a number of advantages over their early-1900s competitors. They did not have the vibration, smell, and noise associated with gasoline cars. Changing gears on gasoline cars was the most difficult part of driving, and electric vehicles did not require gear changes. Electric cars found popularity among well-heeled customers who used them as city cars, where their limited range proved to be even less of a disadvantage. The cars were also preferred because they did not require a manual effort to start, as did gasoline cars which featured a hand crank to start the engine. Electric cars were often marketed as suitable vehicles for women drivers due to this ease of operation.
6. จุดอ่อนของ Electric Cars ในยุคแรกๆ คืออะไร
Thomas Edison and an electric car in 1913 (courtesy of the National Museum of American History)
Acceptance of electric cars was initially hampered by a lack of power infrastructure, but by 1912, many homes were wired for electricity, enabling a surge in the popularity of the cars. At the turn of the century, 40 percent of American automobiles were powered by steam, 38 percent by electricity, and 22 percent by gasoline. 33,842 electric cars were registered in the United States, and America became the country where electric cars had gained the most acceptance. Sales of electric cars peaked in 1912.
7. Infrastructure ของ Electric Car คืออะไร

ปีทศวรรษที่ 1920s และ 1980s รถใฃ้น้ำมันกลบตลาด 1920s to 1980s: Gasoline dominates

The low range of electric cars meant they could not make use of the new highways to travel between cities
After enjoying success at the beginning of the century, the electric car began to lose its position in the automobile market. Factors including improved road infrastructure in the 1920s and the discovery of large reserves of petroleum in Texas, Oklahoma, and California paved the way for gasoline cars to gain popularity, with their longer range and newly-affordable fuel. Electric cars were limited to urban use by their slow speed and low range, and gasoline cars were now able to travel farther and faster than equivalent electrics. Gasoline cars became ever easier to operate thanks to the invention of the electric starter by Charles Kettering in 1912, which eliminated the need of a hand crank for starting a gasoline engine, and the noise emitted by ICE cars became more bearable thanks to the use of the muffler, which had been invented by Hiram Percy Maxim in 1897. Finally, the initiation of mass production of gas-powered vehicles by Henry Ford brought the price as low $440 in 1915 (equivalent to roughly $9,200 today). By contrast, in 1912, an electric roadster sold for $1,750 (roughly $39,000 today). By the 1920s, the heydey of electric cars had passed, and a decade later, the American electric automobile industry had effectively disappeared.[1]
8. อะไรที่ทำให้ Electric Car เสื่อมความนิยมในยุคเริ่มแรก และอะไรที่ทำให้ได้รับความสนใจเพิ่มขึ้นในปัจจุบัน
The Henney Kilowatt, a 1961 production electric car
Years passed without a major revival in the use of electric cars. While ICE development progressed at a brisk pace, electric vehicle technology stagnated. In 1947, the invention of the point-contact transistor brought about the creation of modern semiconductor controls and improved batteries; this led to new possibilities for electric propulsion. Within a decade of the creation of the transistor, Henney Coachworks and the National Union Electric Company, makers of Exide batteries, formed a joint venture to produce the first modern electric car based on transistor technology, the Henney Kilowatt. Despite the Kilowatt's improved performance with respect to previous electric cars, consumers found it too expensive compared to equivalent gasoline cars of the time, and production ended in 1961. Even though the Kilowatt was a commercial failure, its technology paved the way for the next generation of electric vehicles. On July 31, 1971, an electric car received the unique distinction of becoming the first manned vehicle to be driven on the Moon; that car was the Lunar rover, which was first deployed during the Apollo 15 mission. The "moon buggy" was developed by Boeing and Delco Electronics, and featured a DC drive motor in each wheel, and a pair of 36-volt silver-zinc potassium hydroxide non-rechargeable batteries.
9. คำว่า semiconductor หมายถึงอะไร
10. Lunar rover คืออะไร เป็นยานที่ใช้พลังงานจากอะไร

ทศวรรษที่ 1990s การฟื้นฟูในวงกว้าง 1990s to present: Revival of mass interest

The General Motors EV1, one of the cars introduced as a result of the California Air Resources Board (CARB) mandate, had a range of 160 mi (260 km) with NiMH batteries in 1999
11. General Motors EV1 คืออะไร มีขีดความสามารถในระดับใด
After years outside the limelight, the energy crises of the 1970s and 80s brought about renewed interest in the perceived independence electric cars had from the fluctuations of the hydrocarbon energy market. At the 1990 Los Angeles Auto Show, General Motors President Roger Smith unveiled the GM Impact concept electric car, along with the announcement that GM would build electric cars for sale to the public.
In the early 1990s, the California Air Resources Board (CARB), the government of California's "clean air agency", began a push for more fuel-efficient, lower-emissions vehicles, with the ultimate goal being a move to zero-emissions vehicles such as electric vehicles. Impressed by concept vehicles such as the Impact, CARB set guidelines that would require carmakers to make 10% of their fleets emission-free by 2003. In response, automakers soon developed electric models to comply with the new regulations; however, the automakers were widely accused of deliberate self-sabotage, failing to adequately promote their electric vehicles in order to create the false impression that consumers were not interested in electric cars, while fighting against the CARB mandate using lobbyists and lawsuits. Electric cars were expensive to develop and cost two or three times as much as equivalent gasoline cars to produce; as such, they were not a profitable enterprise for the car companies. In 2001, CARB was forced to neuter its ZEV mandate, resulting in almost all production electric cars being withdrawn from the market, and in many cases destroyed by their manufacturers.
12. California Air Resources Board (CARB) คืออะไร มีนโยบายอย่างไร
13. คำว่า zero-emissions vehicles มีความหมายว่าอย่างไร และจะทำได้อย่างไร
In response to a lack of major-automaker participation in the electric car industry, a number of small companies cropped up in their place, designing and marketing electric cars for the public. In 1994, the REVA Electric Car Company was established in Bangalore, India, as a joint venture between the Maini Group India and AEV of California. After seven years of research and development, it launched the REVAi, known as the G-Wiz i in the United Kingdom, in 2001. In 2007, Miles Electric Vehicles announced that it would bring the XS500, a highway-capable all-electric sedan to the US by early 2009. California company Tesla Motors, hoping to gain a foothold in the electric sports car market, released the Lotus Elise-based Tesla Roadster in 2008.
14. REVA Electric Car คืออะไร ใคร และที่ไหน เป็นผู้ริเริ่ม
The Think City is a popular electric car in Europe.
Throughout the 1990s, interest in fuel-efficient or environmentally friendly cars declined among Americans, who instead favored sport utility vehicles, which were affordable despite their poor fuel efficiency thanks to lower gasoline prices. American automakers chose to focus their product lines around the truck-based vehicles, which enjoyed larger profit margins than the smaller cars which were preferred in places like Europe or Japan. In 1999, the Honda Insight hybrid car became the first hybrid to be sold in North America since the little-known Woods hybrid of 1917. Hybrids, which featured a combined gasoline and electric powertrain, were seen as a balance, offering an environmentally friendly image and improved fuel economy, without being hindered by the low range of electric vehicles, albeit at an increased price over comparable gasoline cars. Sales were poor due to the lack of interest attributed to the car's small size and the lack of necessity for a fuel-efficient car at the time.
15. คำว่า Sport Utility Vehicles หรือ SUV หมายถึงอะไร มีข้อดีและข้อด้อยอย่างไร
The Nissan LEAF is an electric car that is expected to be marketed in the North America, Europe, and Japan, beginning in autumn 2010.
16. Nissan LEAF ต่างจากรถ Toyota Prius อย่างไร
The 2000s energy crisis brought renewed interest in hybrid and electric cars. In America, sales of the Toyota Prius (which had been on sale since 1999 in some markets) jumped, and a variety of automakers followed suit, releasing hybrid models of their own. Several began to produce new electric car prototypes, as consumers called for cars that would free them from the fluctuations of oil prices.
The global economic recession in the late 2000s led to increased calls for automakers to abandon fuel-inefficient SUVs, which were seen as a symbol of the excess that caused the recession, in favor of small cars, hybrid cars, and electric cars. The most immediate result of this was the announcement of the 2010 release of the Chevrolet Volt, a plug-in hybrid car that represents the evolution of technologies pioneered by the EV1 of the 90s. The Volt will be able to travel for up to 40 mi (60 km) on battery power alone before activating an ICE to run a generator which re-charges its batteries.
17. Chevrolet Volt คือยานพาหนะในลักษณะใด เป็นความริเริ่มของบริษัทรถยนต์ใด ประเทศใด
The Nissan LEAF, due to be launched in 2009[2] , is the first all electric, zero emission five door family hatchback to be produced for the mass market. Lithium-ion battery technology, smooth body shell and advanced regenerative braking give the LEAF performance comparable to an ICE, a range of around 160km and the capability to reach 80% recharge levels in under 30 minutes.[3]

ความยอมรับในรถไฟฟ้า Acceptance of electric cars

The REVAi, also known as the G-Wiz, is thetop-selling electric car in the world
Electric vehicles which store electrical energy in a capacitor or battery would not be able to immediately replace all gasoline cars given the available transportation infrastructure. For example, while a gasoline car could undertake a road trip which would require several short (around five minutes) fuel stops to complete, current electric car technology would not be capable of completing the trip in the same length of time; in addition to the limited range of current electric cars, they are not as quick or as practical to recharge. Even a practically comparable capacitor-based car, which would conceptually permit much faster recharging times than a battery car can, would require an electrical infrastructure that could "quick-charge" the car; provide a significant amount of energy, at very high current, to the car at its charging station, for a similar amount of time to that required to refuel a gasoline car. Charging stations are being built, and the charge time issue of electric cars is improving, and is on the brink of being eliminated.[citation needed]
18. charging station หมายถึงอะไร
Charging stations can slowly charge their own supercapacitors and use them to rapidly discharge large amounts of energy into fast-charging electric car batteries or super/ultracapacitors, and without putting too much of a strain on the power grid. Power grid upgrades are overdue, due to their old age, in some areas, and they are being done or are being prepared for in some places, such as Denmark.
19. super/ultracapacitors หมายถึงอะไร ต่างจาก Battery ทั่วๆไปอย่างไร
Today's infrastructure is suited to the slower charging cycle of battery electric cars, which must be parked for several hours while they recharge, making them suited for a commuter role but unsuitable for the long-distance driving which less frequent but still a factor in many markets. According to the movie, Who Killed the Electric Car?, the EV1 was "only" suitable for 90% of consumers.[citation needed]
The unit of measurement known as miles per gallon of gasoline equivalent (MPGe) may be misleading if used to compare the overall fuel efficiency of electric and internal combustion vehicles. The MPGe formula uses the pump to wheels energy for gasoline, and the battery to wheels energy for EVs, ignoring the loss of power when charging a battery with AC. However, the MPGe formula for gasoline also ignores the fuel used to pump, refine and transport the gasoline to the filling station.[citation needed]
20. fuel efficiency หรือประสิทธิภาพการใช้พลังงานนั้น วัดกันได้อย่างไร โปรดอธิบาย

การแก้ปัญหา Solutions

Improvements to the electrical infrastructure could lead to mitigation of this issue; if charging stations were to adopt high-power connections to the electrical grid, and charge drivers by the kilojoule, supercapacitor-equipped electric cars could reach the goal of refueling in under ten minutes. It should be noted that this infrastructure change would be akin to the availability of cellular communications technology on a nationwide level; in the same way that rural locations are the last to receive access to high-speed data networks and up-to-date technology, those same locations would be the last to receive adequate electric-vehicle charging facilities. Being able to refuel in remote locations is necessary for a vehicle that is capable of undergoing long-distance, cross-country travel.[citation needed]
21. the electrical infrastructure ในส่วนที่เกี่ยวกับรถยนต์ไฟฟ้า ในที่นี้หมายถึงอะไร
The possibility to standardize replaceable battery packs should also be considered. The battery would be charged at the energy station over several hours and the vehicle's empty battery would be replaced with the fully charged one, for a fee covering the energy stored. Because of the weight (several hundred kilos), the vehicle and the energy station need to be adapted with a simple lift-and-slide-in mechanism to facilitate the replacement. It should not take longer time to switch batteries than filling up a gasoline car. A small car would use one battery pack, while a larger car might use several of the standardized battery packs.
22. lift-and-slide-in mechanism หมายถึงอะไร โปรดอธิบาย
Other ways to mitigate the infrastructure issue are to use a different energy storage technology, or hybrid vehicle technology. The goal of the former is to find a method of storing electrical energy on board the car, in a manner more efficient than in a battery or capacitor. One proposed solution is the hydrogen fuel cell vehicle, which uses a hydrogen-based fuel cell to produce electricity while consuming hydrogen stored in a pressurized tank. This arrangement brings its own problems to the issue; cryogenic, compressed storage of hydrogen gas does not provide the energy density required to overcome gasoline as an onboard energy source; hydrogen infrastructure allows for quick refueling of hydrogen vehicles, but lags behind gasoline and electricity in terms of available refueling locations.
23. hydrogen fuel cell vehicle คิออะไร มีขั้อดีและข้อจำกัดอย่างไร
Alternative energy storage is fast becoming the norm for achieving fuel efficiency without sacrificing range and performance. The most common example of synergy in the area of electric vehicles today is found in hybrid cars, vehicles which use a small auxiliary gasoline or diesel engine to provide performance beyond that of what their electric drivetrains can provide when necessary, as well as eliminating the concern of having to find a charging station to replenish the car's batteries (most currently available hybrid cars are not plug-in hybrids), since it is much easier to find a gasoline refueling station today. In turn, the electric drivetrain can be seen to be assisting the ICE in delivering the greatest possible range and performance from each gallon of fuel consumed. Regenerative braking and other forms of energy management help hybrid and electric cars fulfill this goal.
24. Regenerative braking คืออะไร โปรดอธิบายแนวคิดนี้

ความสัมพันธ์กับรถลูกประสม Relation with hybrid electric vehicles

Hybrid electric cars, such as the Toyota Prius, offer many of the benefits of electric cars while eliminating their range limitations
Cars that make use of electrical power in conjunction with another means of propulsion (often an ICE powered by fossil fuel) are known as hybrid electric cars. Most hybrid cars are not considered pure electrical vehicles because they operate in a charge-sustaining mode. A hybrid vehicle that can operate purely on electrical power becomes an EV when it enters its charge-depleting mode. Hybrid vehicles that can charge their batteries from an external source in the same fashion as electric vehicles are called plug-in hybrid electric vehicles (PHEVs).
25. charge-sustaining mode คิออะไร โปรดอธิบายให้เข้าใจ
26. plug-in hybrid electric vehicles (PHEVs) คืออะไร มีข้อดีอย่างไร

การเปรียบเทียบกับรถใช้น้ำมันเผาไหม้ Comparison with internal combustion engine vehicles

An important goal for electric vehicles is overcoming the disparity between their costs of development, production, and operation, with respect to those of equivalent internal combustion engine vehicles (ICEVs).
27. internal combustion engine vehicles (ICEVs) คืออะไร

ค่าใช้จ่ายในการใช้ Running costs

Electric car operating costs can be directly compared to the equivalent operating costs of a gasoline-powered vehicle. The energy generated by complete combustion of 1 liter gasoline is about 9.7 kilowatt-hours (35 MJ). Accounting for inefficiencies of gasoline vs. electric engines and transmission and battery losses, 1 liter gasoline is equivalent to 2.7 kilowatt-hours (9.7 MJ) from batteries.[4]
The Tesla uses about 13 kW·h/100 km (0.47 MJ/km; 0.21 kW·h/mi)[citation needed], the EV1 used about 11 kW·h/100 km (0.40 MJ/km; 0.18 kW·h/mi).[5]
28. Tesla คืออะไร หากนำออกสู่ตลาด จะมี่ข้อดีและข้ออ่อนอย่างไร
Servicing costs are lower for an electric car. The documentary film Who Killed the Electric Car? shows a comparison between the parts that require replacement in a gasoline powered cars and EV1s, with the garages stating that they bring the electric cars in every 5,000 mi (8,000 km), rotate the tires, fill the windshield washer fluid and send them back out again. Even the hydraulic brakes require less maintenance because regenerative braking itself also slows the vehicle, as it does with a hybrid.
Electric cars using lead-acid batteries require their regular replacement, while with routine maintenance internal combustion engines can last the lifetime of the vehicle. NiMH batteries typically last the life of the vehicle. Toyota Prius vehicles have been known to go over 300,000 km (190,000 mi) without needing a battery replacement, though the Toyota warranty is for 10 years/150,000 mi (240,000 km) or 8 years/100,000 mi (160,000 km), and new batteries cost around $2,300 to $2,600 in 2008 and are expected to fall in price over time.[6][7]
29. จากผลการวิจัยและติดตามการใช้งานของ Toyota Prius ทำให้ทราบว่าแบตเตอรี่ที่ใช้งานนั้นมีความคงทนมากน้อยอย่างไร

ประสิทธิภาพการใช้พลังงาน Energy efficiency

Proponents of electric cars usually tout an increased efficiency as the primary advantage of an electric vehicle as compared to one powered by an internal combustion engine. The energy efficiency comparison is difficult to make because the two vehicles operate on different principles. Vehicles powered by internal combustion engines operate convert energy stored in fossil fuels to mechanical energy through the use of a heat engine. Heat engines operate with very low efficiencies because heat cannot be converted directly into mechanical energy. Electric vehicles convert stored electric potential into mechanical energy. Electricity can be converted into mechanical energy at very high efficiencies. A quick analysis will show electric vehicles are significantly more efficient. However, electricity (in a form usable for humans) does not naturally exist in nature. The electricity used for electric cars may be created by converting fossil fuels to electricity using a heat engine (with a similar efficiency as an automotive engine), converting nuclear energy to electricity using a heat engine, or through dams, windmills, or solar energy. Each of these conversion processes operate with less than 100% efficiency and those involving heat engines operate at relatively low efficiencies.
When comparing the efficiencies of an electric vehicle to a gasoline vehicle, the efficiency of the source of generating the electric energy must be included in the comparison. For example, it would be incorrect to say that an electric vehicle charged each night from a gasoline powered generator is more efficient than a gasoline powered vehicle.
30. หากจะทำให้รถไฟฟ้าได้มีพลังงานที่เหมาะสมแก่วัตถุประสงค์ แหล่งของหลังงานในการสร้างกระแสไฟฟ้านั้นควรมาจากอะไรบ้าง และอะไรที่ควรนำมาใช้ผลิตไฟฟ้าให้น้อยที่สุด
An electric car's efficiency is affected by its charging and discharging efficiencies, which ranges from 70% to 85%. The electricity generating system in the US loses 9.5% of the power transmitted between the power station and the socket, and the power stations are 33% efficient in turning the calorific value of fuel at the power station to electrical power.[8] Overall this results in an efficiency of 20% to 25% from fuel into the power station, to power into the motor of the grid-charged EV, comparable or slightly better than the average 20% efficiency of gasoline-powered vehicles in urban driving, though worse than the about 45 % of modern Diesel engines running under optimal conditions (e.g. on motorways).
Production and conversion electric cars typically use 10 to 23 kW·h/100 km (0.17 to 0.37 kW·h/mi).[5][9] Approximately 20% of this power consumption is due to inefficiencies in charging the batteries. Tesla Motors indicates that the vehicle efficiency (including charging inefficiencies) of their lithium-ion battery powered vehicle is 12.7 kW·h/100 km (0.21 kW·h/mi) and the well-to-wheels efficiency (assuming the electricity is generated from natural gas) is 24.4 kW·h/100 km (0.39 kW·h/mi).[10] The US fleet average of 10 l/100 km (24 mpg-US) of gasoline is equivalent to 96 kW·h/100 km (1.58 kW·h/mi), and the Honda Insight uses 32 kW·h/100 km (0.52 kW·h/mi) (assuming 9.6 kW·h per liter of gasoline).
31. โดยแนวโน้มแล้ว แบตเตอรี่ในแบบใดได้รับความนิยมที่จะนำมาใช้เป็นแบตเตอรี่รถไฟฟ้ามากที่สุด
The greater efficiency of electric vehicles is primarily because most energy in a gasoline-powered vehicle is released as waste heat. With an engine getting only 20% thermal efficiency, a gasoline-powered vehicle using 96 kW·h/100 km of energy is only using 19.2 kW·h/100 km for motion.
The waste heat generated by an ICE is frequently put to beneficial use by heating the vehicle interior. Electric vehicles generate very little waste heat and electric heaters must be used to heat the interior of the vehicle. Electric vehicles used in cold weather will show increased energy consumption and decreased range on a single charge.

ระยะทางและความเร็วที่ใช้ Range vs cruising speed

The trade-off for range against cruising speed is well known for vehicles with internal combustion engines. Typically a cruising speed of around 80 km/h (50 mph) is near-optimal, although for specific cars it could fall as low as 40 km/h (25 mph), or as high as 100 km/h (60 mph).
Steady speed fuel economy
For electric vehicles the equation is less complex, and maximum range is achieved at comparatively low speeds.
32. รถุไฟฟ้ามีปัญหาด้านอัตราการเร่งหรือไม่ มากน้อยเพียงใด เมื่อเทียบกับรถยนต์มใช้พลังงานเชื้อเพลิงปกติ

การปล่อยคาร์บอนไดออกไซด์ Carbon dioxide emissions

Sources of electricity in the US 2006[11]
While electric cars produce no emissions at the tailpipe— indeed they don't have one— their use increases demand for electrical generation. Generating electricity and producing liquid fuels for vehicles are different categories of the energy economy, with different inefficiencies and environmental harms, but both emit carbon dioxide into the environment. The well-to-wheel (WTW) carbon dioxide (CO2) emissions of electric cars are always[citation needed] lower than those of conventional cars, but the amount of savings depend on the emissions intensity of the existing electricity infrastructure. An electric car's WTW emissions are much lower in a country like Canada, which electricity supply is dominated by hydro and nuclear, than in countries like China and the US that rely heavily on coal.
33. well-to-wheel (WTW) carbon dioxide (CO2) emissions” มีความหมายว่าอย่างไร
An EV recharged from the existing US grid electricity emits about 115 grams of CO2 per kilometer driven (6.5 oz(CO2)/mi), whereas a conventional gasoline powered car emits 250 g(CO2)/km (14 oz(CO2)/mi).[12] The savings are smaller relative to hybrid or diesel cars, but would be more significant in countries with cleaner electric infrastructure. In a worst case scenario where incremental electricity demand would be met exclusively with coal, a 2009 study conducted by the WWF and IZES found that a mid-size EV would emit roughly 200 g(CO2)/km (11 oz(CO2)/mi), compared with an average of 170 g(CO2)/km (9.7 oz(CO2)/mi) for a gasoline powered compact car.[13] This study concluded that introducing 1 million EV cars to Germany would, in the best case scenario, only reduce CO2 emissions by 0.1%, if nothing is done to upgrade the electricity infrastructure or manage demand.[13]
34. จะมีความเหมาะสมมากน้อยหากนำพลังงานจากถ่านหินมาใช้เป็นพลังงานขับเคลื่อนรถไฟฟ้า
Like any other vehicles, EVs themselves of course differ in their fuel efficiency and their total cost of ownership, including the environmental costs of their manufacture and disposal.
48.5% of the electricity generated in the United States comes from coal-fired powerplants
According to the US Department of Energy, most electricity generation in the United States is from fossil sources, and half of that is from coal.[8] Coal is more carbon-intensive than oil. Overall average efficiency from US power plants (33% efficient) to point of use (transmission loss 9.5%) is 30%.[8] Accepting a 70% to 80% efficiency for the electric vehicle gives a figure of only around 20% overall efficiency when recharged from fossil fuels. That is comparable to the efficiency of an internal combustion engine running at variable load. The efficiency of a gasoline engine is about 16%, and 20% for a diesel engine.[14][15] This is much lower than the efficiency when running at constant load and optimal rotational speed, which gives efficiency around 30% and 45% respectively.[16] The electric battery suffers from similar decrease in efficiency when running at variable load,[17] which accounts for the modest increased efficiency of hybrid vehicles. The actual result in terms of emissions depends on different refining and transportation costs getting fuel to a car versus a power plant. Diesel engines can also easily run on renewable fuels, biodiesel, vegetable oil fuel, with no loss of efficiency. Using fossil based grid electricity substantially negates the in-vehicle efficiency advantages of electric cars. The major potential benefit of electric cars is to allow diverse renewable electricity sources to fuel cars.
35. ไฟฟ้าที่ใช้ในสหรัฐอเมริกา มาจากพลังงานหลักคืออะไร ต่างจากประเทศฝรั่งเศส หรือญี่ปุ่นอย่างไร
36. Biodiesel หมายถึงอะไร เราสามารถนำอะไรมาเป็นพลังงาน Biodiesel ได้บ้าง
According to the US Department of Energy, CO2 emissions for electricity generated from coal result in 2.05 lb (0.93 kg) of CO2 per kW·h or roughly 0.500 lb(CO2)/mi (0.141 kg(CO2)/km). CO2 emissions from electricity produced from all types of fuel using the mix of sources in the US as of 2008 results in 1.35 lb (0.61 kg) of CO2 per kW·h or 0.337 pounds of CO2 per mile (0.095 kg(CO2)/km) from an electric vehicle with a 0.250-kilowatt-hour-per-mile (0.155 kW·h/km; 0.56 MJ/km) energy consumption (typical). Gasoline used in Internal Combustion Engine automobiles produces 19.5 pounds per US gallon (0.00016 kg(CO2)/L) directly and an undetermined amount of CO2 in refining the crude oil, and transporting the gasoline to retail point of sale. With a US fleet average of 21.3 mpg-US (11.0 L/100 km; 25.6 mpg-imp) in 2008, this would indicate a CO2 production of 0.915 lb/mi (0.258 kg/km) driven. Electric powered automobiles, even using the most CO2 intensive coal produced electricity, produce half the emissions of gasoline powered automobiles.[18]
If solar, wind, hydro, or nuclear electric generation, or carbon capture for fossil fuel powered plants were to become prevalent, electric vehicles could produce less CO2, potentially zero. Based on GREET simulations, electric cars can achieve up to 100% reductions with renewable electric generation, against 77% with a B100 car. At present only a 32% reduction of CO2 is available for electric cars recharging from non-renewable utilities on the US Grid, because of the majority use of fossil fuels in generation, and inefficiency in the grid itself.[8][19][20]
37. พลังงานจากอะไรบ้าง ที่จะไม่สร้างปัญหาโลกร้อน

ควัน Smog

The Ontario Medical Association announced that smog is responsible for an estimated 9,500 premature deaths in the province each year.[21] Electric cars or plug-in hybrids, especially in emission-free electric mode, could vastly reduce this number.

อัตราการเร่งและการออกแบบระบบเกียร์ Acceleration and drivetrain design

Although some electric vehicles have very small motors, 15 kW (20 hp) or less and therefore have modest acceleration, the relatively constant torque of an electric motor even at very low speeds tends to increase the acceleration performance of an electric vehicle for the same rated motor power. Another early solution was American Motors’ experimental Amitron piggyback system of batteries with one type designed for sustained speeds while a different set boosted acceleration when needed.
38. Drivetrain คืออะไร ในภาษาไทยเรียกว่าอะไร
Electric vehicles can also use a direct motor-to-wheel configuration which increases the amount of available power. Having multiple motors connected directly to the wheels allows for each of the wheels to be used for both propulsion and as braking systems, thereby increasing traction. In some cases, the motor can be housed directly in the wheel, such as in the Whispering Wheel design, which lowers the vehicle's center of gravity and reduces the number of moving parts. When not fitted with an axle, differential, or transmission, electric vehicles have less drivetrain rotational inertia.
39. a direct motor-to-wheel configuration … หมายควาว่าอย่างไร แนวคิดนี้มีข้อดีและข้ออ่อนอย่างไร
40. center of gravity คืออะไร เป็นข้อดีหรือข้อด้อยของรถไฟฟ้า
When the foot is lifted from the accelerator of an ICE, engine braking causes the car to slow. An EV would coast under these conditions, and applying mild regenerative braking instead provides a more familiar response.
41. regenerative braking คืออะไร มีข้อดีและข้อด้อยอย่างไร
A gearless or single gear design in some EVs eliminates the need for gear shifting, giving such vehicles both smoother acceleration and smoother braking. Because the torque of an electric motor is a function of current, not rotational speed, electric vehicles have a high torque over a larger range of speeds during acceleration, as compared to an internal combustion engine. As there is no delay in developing torque in an EV, EV drivers report generally high satisfaction with acceleration.
42. A gearless or single gear design คืออะไร ต่างจากรถยนต์ธรรมดาอย่างไร จะทำได้หรือไม่ และเพราะเหตุใด
For example, the Venturi Fetish delivers supercar acceleration despite a relatively modest 220 kW (295 hp), and top speed of around 160 km/h (100 mph). Some DC motor-equipped drag racer EVs, have simple two-speed transmissions to improve top speed.[22] The Tesla Roadster prototype can reach 100 km/h (62 mph) in 4 seconds with a motor rated at 185 kW (248 hp).[23]
43. Tesla Roadster เป็นรถยนต์ไฟฟ้าใช่หรือไม่ มีคุณสมบัติเด่นอย่างไร และมีข้ออ่อนหรือข้อจำกัดอย่างไร

ความปล่อดภัย Safety

ความปลอดภัยยานพาหนะ Vehicle safety

Great effort is taken to keep the mass of an electric vehicle as low as possible, in order to improve the EV's range and endurance. Despite these efforts, the high density and weight of the electric batteries usually results in an EV being heavier than a similar equivalent gasoline vehicle. However, in a collision, the occupants of a heavy vehicle will, on average, suffer fewer and less serious injuries than the occupants of a lighter vehicle; therefore, the additional weight brings safety benefits despite having a negative effect on the car's performance. An accident in a 2,000 lb (900 kg) vehicle will on average cause about 50% more injuries to its occupants than a 3,000 lb (1,400 kg) vehicle.[24][25] Some electric cars use low rolling resistance tires, which typically offer less grip than normal tires.[26][27][28]
44. ปัญหาด้านความปลอดภัยจากรถไฟฟ้าคืออะไร
45. รถ EV หรือรถยนต์ไฟฟ้า หนักหรือเบากว่ารถยนต์ใช้พลังงานน้ำมันเชื้อเพลิงธรรมดา และเพราะเหตุใด

อันตรายแก่ผู้เดินถนน Hazard to pedestrians

Electric cars produced much less roadway noise as compared to vehicles propelled by a internal combustion engine. However, the reduced noise level from electric engines may not be beneficial for all road users, as blind people or the visually-impaired consider the noise of combustion engines a helpful aid while crossing streets, hence electric cars and hybrids could pose an unexpected hazard.[29][30] Tests have shown that this is a valid concern, as vehicles operating in electric mode can be particularly hard to hear below 20 mph (30 km/h) for all types of road users and not only the visually-impaired. At higher speeds the sound created by tire friction and the air displaced by the vehicle start to make more audible noise.[30] The US Congress and the European Commission are exploring legislation to establish a minimum level of sound for electric and hybrid electric vehicles when operating in electric mode, so that blind people and other pedestrians and cyclists can hear them coming and detect from which direction they are approaching.[30]
46. รถไฟฟ้า ก่อเสียง roadway noise มากหรือน้อยกว่ารถธรรมดา

การทำความร้อนและความเย็นให้ห้องผู้โดยสาร Cabin heating and cooling

While heating can be simply provided with an electric resistance heater, higher efficiency and integral cooling can be obtained with a reversible heat pump (this is currently implemented in the hybrid Toyota Prius). Positive Temperature Constant (PTC) junction cooling[31] is also attractive for its simplicity - this kind of system is used for example in the Tesla Roadster. However some electric cars, for example the Citroën Berlingo Electrique, use an auxiliary heating system (for example gasoline-fueled units manufactured by Webasto or Eberspächer). Cabin cooling can be augmented with solar power, most simply and effectively by inducting outside air to avoid extreme heat buildup when the vehicle is closed and parked in the sunlight (such cooling mechanisms are available as aftermarket kits for conventional vehicles). Two models of the 2010 Toyota Prius include this feature as an option.[32]
47. รถยนต์ไฟฟ้า หรือรถลูกประสมมีแนวคิดการทำความร้อนหรือความเย็นในห้องโดยสารภายในรถอย่างไร

การนำพลังงานจากเบรคมาใช้ Regenerative braking

Main article: Regenerative braking
Using regenerative braking, a feature which is present on many electric and hybrid vehicles, estimates of 71-93% of the energy used to accelerate the mass of the vehicle may be recovered during braking[33], increasing its efficiency, particularly in urban drive cycles.

แบตเตอรี่ Batteries

Prototypes of 75 watt-hour/kilogram lithium-ion polymer battery. Newer lithium-ion cells can provide up to 130 W·h/kg and last through thousands of charging cycles.
Rechargeable battery materials used in electric vehicles include lead-acid ("flooded" and VRLA), NiCd, nickel metal hydride, lithium-ion, Li-ion polymer, and, less commonly, zinc-air and molten salt. The Lithium iron phosphate battery is currently one of the most promising electric vehicle battery variants due to its light weight, high energy density, and lack of thermal runaway issues that have plagued laptop computer lithium-ion batteries. The amount of electricity stored in batteries is measured in ampere hours or coulombs, with the total energy often measured in watt hours.
48. แบตเตอรี่ที่ใช้ในรถยนต์ไฟฟ้า มีการใช้เทคโนโลยีอะไรบ้าง และแต่ละแบบมีข้อดีและข้อจ้ำกัดอย่างไร อะไรคืออนาคต
Historically, EVs and PHEVs have had issues with high battery costs, limited range between battery recharging, charging time, and battery lifespan, which have limited their widespread adoption. Ongoing battery technology advancements have addressed many of these problems; many models have recently been prototyped, and a few future production models have been announced.

การชาร์ตไฟฟ้า Charging

Main article: charging station
Ultra-light design by IWK
Charging station at Rio de Janeiro, Brazil. This station is run by Petrobras and uses solar energy.
Batteries in BEVs must be periodically recharged (see also Replacing, below). BEVs most commonly charge from the power grid (at home or using a street or shop charging station), which is in turn generated from a variety of domestic resources; such as coal, hydroelectricity, nuclear and others. Home power such as roof top photovoltaic solar cell panels, micro hydro or wind may also be used and are promoted because of concerns regarding global warming.
49. power grid หมายถึงอะไร โปรดอธิบาย
Charging time is limited primarily by the capacity of the grid connection. A normal household outlet is between 1.5 kW (in the US, Canada, Japan, and other countries with 110 volt supply) to 3 kW (in countries with 220/240V supply). The main connection to a house might be able to sustain 10 kW, and special wiring can be installed to use this. At this higher power level charging even a small, 7 kW·h (22–45 km) pack, would probably require one hour. This is small compared to the effective power delivery rate of an average petrol pump, about 5,000 kW. Even if the supply power can be increased, most batteries do not accept charge at greater than their charge rate ("1C"), because high charge rates have an adverse effect on the discharge capacities of batteries.[34]
In 1995, some charging stations charged BEVs in one hour. In November 1997, Ford purchased a fast-charge system produced by AeroVironment called "PosiCharge" for testing its fleets of Ranger EVs, which charged their lead-acid batteries in between six and fifteen minutes. In February 1998, General Motors announced a version of its "Magne Charge" system which could recharge NiMH batteries in about ten minutes, providing a range of 60 to 100 mi (100 to 160 km).[35]
50. ระบบชาร์ตไฟ "PosiCharge" เป็นของบริษัทอะไร มีข้อดีหรือเสียอย่างไร
In 2005, mobile device battery designs by Toshiba were claimed to be able to accept an 80% charge in as little as 60 seconds.[36] Scaling this specific power characteristic up to the same 7 kW·h EV pack would result in the need for a peak of 340 kW from some source for those 60 seconds. It is not clear that such batteries will work directly in BEVs as heat build-up may make them unsafe.
51. ระบบชาร์ตไฟของ Toshiba ประเทศญี่ปุ่น มีข้อดีอย่างไร
Altairnano's NanoSafe batteries can be recharged in several minutes, versus hours required for other rechargeable batteries. A NanoSafe cell can be charged to around 95% charge capacity in approximately 10 minutes.[37][38]
Many people do not always require fast recharging because they have enough time, 30 minutes to six hours (depending on discharge level) during the work day or overnight to recharge. The charging does not require attention so it takes only a few seconds of the owner's time for plugging and unplugging the charging source. Many BEV drivers prefer recharging at home, avoiding the inconvenience of visiting a charging station. Some workplaces provide special parking bays for electric vehicles with chargers provided - sometimes powered by solar panels. In colder areas such as Finland, some northern US states and Canada there already exists some infrastructure for public power outlets, in parking garages and at parking meters, provided primarily for use by block heaters and set with circuit breakers that prevent large current draws for other uses.[39]
52. การชาร์ตไฟให้เสร็จได้โดยเร็ว จำเป็นหรือไม่ และมากน้อยเพียงใด

อุปกรณ์ต่อเชื่อม Connectors

The charging power can be connected to the car in two ways using an (electric coupling). The first is a direct electrical connection known as conductive coupling. This might be as simple as a mains lead into a weatherproof socket through special high capacity cables with connectors to protect the user from the high voltage. The second approach is known as inductive charging. A special 'paddle' is inserted into a slot on the car. The paddle is one winding of a transformer, while the other is built into the car. When the paddle is inserted it completes an electromagnetic circuit which provides power to the battery pack. In one inductive charging system, one winding is attached to the underside of the car, and the other stays on the floor of the garage.[40]
53. conductive coupling หมายถึงอะไร
54. transformer คืออไร
The major advantage of the inductive approach is that there is no possibility of electric shock as there are no exposed conductors, although interlocks, special connectors and RCDs (ground fault detectors) can make conductive coupling nearly as safe. Inductive charging can also reduce vehicle weight, by needing fewer components of the charging system on the vehicle itself.[41] However there is no reason that conductive coupling equipment cannot take advantage of the same concept. Conductive coupling equipment is lower in cost and much more efficient due to a vastly lower component count.[citation needed] An inductive charging proponent from Toyota contended in 1998 that overall cost differences were minimal, while a conductive charging proponent from Ford contended that conductive charging was more cost efficient.[41]
55. inductive charging คืออะไร ต่างจากระบบอื่นๆ อย่างไร

ระยะการเดินทางก่อนที่จะอัดไฟครั้งต่อไป Travel range before recharging

The range of an electric car depends on the number and type of batteries used. The weight and type of vehicle, and the performance demands of the driver, also have an impact just as they do on the range of traditional vehicles. The range of an electric vehicle conversion
depends on the battery type:
Lead-acid batteries are the most available and inexpensive and can be charged and controlled with low cost equipment, although owing to relatively short lifetime, due to high discharge rates and deep-cycling which they are unsuited for, have a higher overall cost than more expensive alternatives. Such conversions generally have a range of 30 to 80 km (20 to 50 mi). Production EVs with lead-acid batteries are capable of up to 130 km (80 mi) per charge.
NiMH batteries have higher energy density and may deliver up to 200 km (120 mi) of range.
The lithium-ion battery in the AC Propulsion tzero provides 400 to 500 km (200 to 300 mi) of range per charge.[42]. The list price of this vehicle when it was released in 2003 was $220,000.[43]
Lithium is also less expensive than nickel.[44]
56. เทคโนโลยีแต่ละประเภท มี่ข้อดีและข้ออ่อนอย่างไร
Finding the economic balance of range against performance, battery capacity versus weight, and battery type versus cost challenges every EV manufacturer.
With an AC system regenerative braking can extend range by up to 50%[citation needed] under heavy but not stop-start traffic conditions. Otherwise, the range is extended by about 10 to 15% in city driving, and only negligibly in highway driving, depending upon terrain.
57. regenerative braking คืออะไร มีข้อดีในการประหยัดพลังงานของรถไฟฟ้าได้มากน้อยเพียงใด

การเปลี่ยนแบตเตอรี่ Replacing

An alternative to quick recharging is simply to exchange the drained or nearly drained batteries (or battery range extender modules) with fully charged batteries, rather as stagecoach horses were changed at coaching inns. Batteries could be leased or rented instead of bought, and then maintenance deferred to the leasing or rental company, and ensures availability (see Think Nordic). In 1947, in Nissan's first electric car, the batteries were removable so that they could be replaced at filling stations with fully charged ones. The company Better Place is one potential player in this market - however they neither rent nor lease the batteries, using them as a means to an end to sell kilometers/miles to customers the have a contract with. Though some vehicle manufacturers and other companies are also investigating the possibility, none yet seems to have entered the market.
58. การใช้แนวคิดรถม้าวิ่งรับส่งผู้โดยสารในระยะยาว (stagecoach horses) นำมาใช้กับแนวคิดการใช้รถไฟฟ้าได้อย่างไร
BEVs (including buses and trucks) can also use genset trailers and pusher trailers to extend their range without the additional weight during normal short-range use. Drained battery set trailers can be replaced by charged ones along a route.
Such BEVs can become hybrid vehicles depending on the trailer's and car's types of energy and powertrain.
Replaceable batteries were used in the electric buses at the 2008 Summer Olympics.[45]
59. genset trailers and pusher trailers คืออะไร จะได้เปรียบหรือมีข้อดีในการนำแนวคิดรถไฟฟ้ามาใช้ได้อย่างไร

การใช้วิธีการเติม Refilling

Zinc-bromine flow batteries or Vanadium redox batteries can be refilled, instead of recharged, saving time. The depleted electrolyte can be recharged at the point of exchange, or taken away to a remote station.
60. Zinc-bromine flow batteries or Vanadium redox batteries มีแนวคิดการใข้งานอย่างไร

ยานพาหนะกับระบบเครือข่าย และการเติมไฟฟ้าและช่วงระหว่างกัน Vehicle-to-grid: uploading and grid buffering

Main article: Vehicle-to-grid
A Smart grid allows BEVs to provide power to the grid, specifically:
During peak load periods, when the cost of electricity can be very high. These vehicles can then be recharged during off-peak hours at cheaper rates while helping to absorb excess night time generation. Here the batteries in the vehicles serve as a distributed storage system to buffer power.
During blackouts, as an emergency backup supply.
The basic premise here is similar to Economy 7 in the United Kingdom: incentives to spread the load more evenly across the day reduces the need for expensive peak demand and thus the need to building power stations that can supply it on demand.

อายุการใช้งานของแบตเตอรี่ Lifespan

Individual batteries are usually arranged into large battery packs of various voltage and ampere-hour capacity products to give the required energy capacity. Battery life should be considered when calculating the extended cost of ownership, as all batteries eventually wear out and must be replaced. The rate at which they expire depends on a number of factors.
The depth of discharge (DOD) is the recommended proportion of the total available energy storage for which that battery will achieve its rated cycles. Deep cycle lead-acid batteries generally should not be discharged below 80% capacity. More modern formulations can survive deeper cycles.
61. depth of discharge (DOD) หมายถึงอะไร
In real world use, some fleet Toyota RAV4 EVs, using NiMH batteries will exceed 160 000 km (100,000 mi), and have had little degradation in their daily range.[46] Quoting that report's concluding assessment:
The five-vehicle test is demonstrating the long-term durability of Nickel Metal Hydride batteries and electric drive trains. Only slight performance degradation has been observed to-date on four out of five vehicles.... EVTC test data provide strong evidence that all five vehicles will exceed the 100,000-mile (160,000 km) mark. SCE’s positive experience points to the very strong likelihood of a 130,000-to-150,000-mile (210,000 to 240,000 km) Nickel Metal Hydride battery and drive-train operational life. EVs can therefore match or exceed the lifecycle miles of comparable internal combustion engine vehicles.
62. ผลของการใช้แบตเตอรี่กับรถไฟฟ้าในช่วงหลายปีที่ผ่านมีผลอย่างไร แบตเตอรี่มีความคงทนมากน้อยเพียงใด
In June 2003 the 320 RAV4 EVs of the SCE fleet were used primarily by meter readers, service managers, field representatives, service planners and mail handlers, and for security patrols and carpools. In five years of operation, the RAV4 EV fleet had logged more than 6.9 million miles, eliminating about 830 tons of air pollutants, and preventing more than 3,700 tons of tailpipe CO2 emissions. Given the successful operation of its EVs to-date, SCE plans to continue using them well after they all log 100,000 miles (160,000 km).
Jay Leno's 1909 Baker Electric still operates on its original Edison cells. Battery replacement costs of BEVs may be partially or fully offset by the elimination of some regular maintenance, such as oil and filter changes required for ICEVs, and by the greater reliability of BEVs due to their fewer moving parts. They also do away with many other parts that normally require servicing and maintenance in a regular car, such as on the gearbox, cooling system, and engine tuning. And by the time batteries do finally need definitive replacement, they can be replaced with later generation ones which may offer better performance characteristics, in the same way one might replace an old laptop or mobile phone battery.

ความปล่อดภัย Safety

The safety issues of BEVs are largely dealt with by the international standard ISO 6469. This document is divided in three parts dealing with specific issues:
- On-board electrical energy storage, i.e. the battery
- Functional safety means and protection against failures
- Protection of persons against electrical hazards.
Firefighters and rescue personnel receive special training to deal with the higher voltages and chemicals encountered in electric and hybrid electric vehicle accidents. While BEV accidents may present unusual problems, such as fires and fumes resulting from rapid battery discharge, there is apparently no available information regarding whether they are inherently more or less dangerous than gasoline or diesel internal combustion vehicles which carry flammable fuels.[citation needed]
Lithium-ion batteries can overheat due to short circuiting or crash damage. One in every 60,000 electric cars could experience a problem due to a lithium ion cell overheating. A failure of one cell could spread to other cells within the battery. Even if battery fires were no more widespread than fires associated with gasoline cars, negative portrayals in the mass media could prove detrimental to the transition to electric vehicles.[47]
63. ปัญหาด้านความปลอดภัยอันเกิดจากรถไฟฟ้า คืออะไร และมีแนวทางจะแก้ไขได้อย่างไร

อนาคต Future

เทคโนโลยีเกี่ยวกับแบตเตอรี่ Battery technology

The future of battery electric vehicles depends primarily upon the cost and availability of batteries with high energy densities, power density, short charge time and long life, as all other aspects such as motors, motor controllers, and chargers are fairly mature and cost-competitive with internal combustion engine components. Li-ion, Li-poly and zinc-air batteries have demonstrated energy densities high enough to deliver range and recharge times comparable to conventional vehicles.[citation needed]By the year 2020, an estimated 30% of the cars driving on the road will be battery, electric or plug-in hybrid. [48]
64. ในแนวคิดของท่าน มีทัศนะอย่างไรเกี่ยวกับพัฒนาการของแบตเตอรี่
Bolloré, a French logistics conglomerate, developed a concept car, called the Bluecar, using Lithium-ion polymer batteries developed by a subsidiary, Batscap. It had a range of 250 km (160 mi) and top speed of 125 km/h (80 mph).[49]
The cathodes of early 2007 lithium-ion batteries are made from lithium-cobalt metal oxide. That material is expensive, and can release oxygen if its cell is overcharged. If the cobalt is replaced with iron phosphates, the cells will not burn or release oxygen under any charge. The price premium for early 2007 hybrids is about $5000 US, some $3000 of which is for their NiMH battery packs. At early 2007 gasoline and electricity prices, that would break even after six to ten years of operation. The hybrid premium could fall to $2000 in five years, with $1200 or more of that being cost of lithium-ion batteries, breaking even after three years.[50]
65. จงอภิรายเกี่ยวกับวิธีการผลิตแบตเตอรี่รถยนต์ไฟฟ้า และแนวทางในการทำให้มันมีราคาที่ลดลง หรือผู้บริโภคสามารถใช้ได้อย่างจริงจัง

วิธีการเก็บพลังงานอื่นๆ Other methods of energy storage

Experimental supercapacitors and flywheel energy storage devices offer comparable storage capacity, faster charging, and lower volatility. They have the potential to overtake batteries as the preferred rechargeable storage for EVs.[51] The FIA included their use in its sporting regulations of energy systems for Formula One race vehicles in 2007 (for supercapacitors) and 2009 (for flywheel energy storage devices).
EEStor claims to have developed a supercapacitor for electricity storage. These units are titanate coated with aluminum oxide and glass to achieve a level of capacitance claimed to be much higher than that currently available on the market. The claimed energy density is 1.0 MJ/kg whereas existing commercial supercapacitors typically have an energy density of around 0.01 MJ/kg, while lithium-ion batteries have an energy density of around 0.59 MJ/kg to 0.95 MJ/kg). EEStor claims that a 5 minute charge should give the supercapacitor enough energy to give a car a range of 400 km (250 mi).[52]
66. supercapacitor คิออะไร ต่างจากแบตเตอรี่ทั่วไปอย่างไร

รถพลังงานแสงอาทิตย์ Solar cars

Main articles: Solar taxi and Solar vehicle
Solar cars are electric cars that derive most or all of their electricity from built in solar panels. After the 2005 World Solar Challenge established that solar race cars could exceed highway speeds, the specifications were changed to provide for vehicles that with little modification could be used for transportation.
67. อนาคตรถพลังงานแสงอาทิตย์จะเป็นอย่างไร มีแนวคิดอะไรที่จะเสริมพิเศษบ้าง


5 comments:

  1. คำถามที่ 1. คำว่า Electric Vehicle กับความว่า Electric Car มีความหมายต่างกันอย่างไร
    ตอบ: Electric Vehicle มีความหมายว่า ยานพาหนะใช้ไฟฟ้าเป็นพลังงานขับเคลื่อน ส่วนคำว่า Car ในที่นี้มักจะหมายถึงรถยนต์ที่วิ่งบนถนนทั่วไป ซึงอาจเป็นรถบ้าน รถแทกซี่ รถยนต์นั่ง ฯลฯ

    ReplyDelete
  2. คำามมที่ 2. Solar Car คืออะไร
    ตอบ: Solar แปลว่าเกี่ยวกับอาทิตย์ หรือแสงอาทิตย์ Solar Car คือรถที่วิ่งได้ด้วยพลัีงแสดงอาทิตย์ หรือรถที่ใ้ช้พลังงานจาก Solar Cell ที่ิติดตั้งเป็นแผงไว้บนหลังคารถ แผงใหญ่ก็รับแสงอาทิตย์ได้มาก แต่แสงอาทิตย์มีเฉพาะเวลาจำกัด คือในตอนกลางวัน และในภูมิประเทศที่มีแสงแดดได้ตลอดวัน เช่นในประเทศแถบแล้ง ทะเลทราย เช่นในตอนกลางของออสเตรเลีย ในประเทศสหรัฐอเมริกา จะเป็นทางตะวันตกแถบเนวาดา อริโซน่า นิวเม๊กซิโก หรือในประเทศแถบอาหรับ และแถบแห้งแล้งอื่นๆ

    ReplyDelete
  3. คำถามที่ 3. Hybrid Car คืออะไร มีลักษณะเด่นอย่างไร
    Hybrid car คือรถยนต์ลูกประสม ใ้ช้พลังงานจาก 2 แหล่งหรือมากกว่า เช่นการใช้พลังงานจากน้ำมันเชื้อเพลิง ร่วมกับใช้พลังงานไฟฟ้า หรือ พลังงานไฮโดรเจนจาก Fuel Cells ร่วมกับพลังไฟฟ้า เป็นต้น

    ReplyDelete
  4. คำถามที่ 4. battery electric vehicle (BEV) คืออะไร หมายความว่าอย่างไร
    ฺBattery electric Vehicle หรือเรียกย่อๆว่า BEV เป็นยานพาหนะที่มีพลังขับเคลื่อนมาจากไฟฟ้าที่จัดเก็บในยานนั้นๆในรูปแบตเตอรี่ หรืออาจจะเรียกได้ว่าเป็นระบบ "Wireless" หรือระบบไร้สาย
    ซึ่งจะต่างจากรถไฟฟ้าที่ีได้ไฟฟ้าจากระบบสาย ดังเช่น รถรางไฟฟ้า มีสายไฟแรงสูงส่งพลังไฟฟ้ามาตามสายสู่มอร์เตอร์ในรถรางไฟฟ้านั้นๆ ซึ่งไม่ต้องใช้แบตเตอรี่ในการจัดเก็บ
    สองระบบนี้มีข้อดีและข้อจำกัดแตกต่างกัน

    ReplyDelete
  5. คำถามที่ 5. ใคร และหรือบริษัทใด ที่ได้ประดิษฐรถ Hybrid Car เป็นครั้งแรก และในปี ค.ศ. อะไร
    คำตอบ:
    ยานพาหนะที่ใช้ไฟฟ้าขับเคลื่อน (Electric vehicle) เริ่มขึ้นโดย Ányos Jedlik, ซึ่งเป็นผู้ประดิษฐมอเตอร์ไฟฟ้า (electric motor) ในปี ค.ศ. 1828, เขาเป็นชาวฮังการี่ (Hungary)
    ในบรรดานักประดิษฐกลุ่มแรกๆ คือ Ányos Jedlik, Vermont blacksmith Thomas Davenport, Professor Sibrandus Stratingh แห่งf Groningen, ประเทศเนเธอแลนด์ ( Netherlands) และชาวสก๊อต ชื่อ Robert Davidson และ Robert Anderson
    แนวทางการประดิษฐส่วนใหญ่เป็นการพัฒนาเทคโนโลยีการจัดเก็บไฟฟ้า หรือแบตเตอรี่ ซึ่งในกลุ่มนักคิดนี้ประกอบด้วย Gaston Plante ในประเทศฝรั่งเศส (France) ในปี ค.ศ. 1865 เช่นเดียวกับชาวฝรั่งเศสด้วยกัน ชื่อ Camille Faure ในปี ค.ศ. 1881 บุคคลเหล่านี้ ที่ทำให้รถไฟฟ้าในยุโรปได้รับความยอมรับเฟื่องฟู ประเทศฝรั่งเศส (France) และสหราชอาณาจักร (United Kingdom) เป็นชาติแรกๆที่ผลักดันให้มีการพัฒนารถไฟฟ้า และด้วยความที่ประเทศขาดแหล่งทรัพยากรอย่างถ่านหิน ประเทศสวิสเซอรฺแลนด์ (Switzerland) จึงส่งเสริมรถไฟฟ้าในระบบราง (Electrification of railway network) เพื่อลดการพึ่งพาพลังงานจากต่างประเทศ
    นักประดิษฐชาวอังกฤษ ชื่อ Thomas Parker เป็นผู้มีส่วนผลักดันให้เกิดนวตกรรมในการใช้พลังงานไฟฟ้ากับระบบรถไฟใต้ดินในกรุงลอนดอน (London Underground) ระบบรถรางที่วิ่งบนพื้นราบ (tramways) บนเส้นทางระหว่างเมือง Liverpool และเมือง Birmingham ซึ่งเป็นระบบที่ไม่ก่อให้เกิดควันเสียดังที่มีในระบบใช้ถ่านหิน ระบบยานหนะไฟฟ้าได้พัฒนาไปอย่างก้าวหน้า จนทำให้มีรถไฟความเร้วสูงระดับกว่า 100 กิโลเมตรต่อชั่วโมง โดย Camille Jenatzy ในวันที่ 29 เมษายน ค.ศ. 1899 ด้วยยานพาหนะรูปคล้ายจรวด ชื่อ Jamais Contente ที่ทำความเร็วสูงสุดได้ 105.88 กิโลเมตรต่อชั่วโมง

    ReplyDelete